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5.8 FLOW ROUTING
5.8.1 Introduction

Flow routing is a mathematical method (model) to predict the changing magnitude,
speed, and shape of a flood wave at one or more locations along waterways such as
rivers, reservoirs, canals, or estuaries. The flood wave can emanate from precipitation
runoff (rainfall or snowmelt), reservoir releases (spillway flows or dam-failures), and
tides (astronomical and/or wind-generated).

Flow routing has long been of vital concern and many ways have been developed to
predict the characteristic features of a flood wave in order to improve the transport of
water through natural or man-made waterways and to determine necessary actions to
protect life and property from the effects of flooding. Commencing with investigations
by Newton (1687), Laplace (1776), Poisson (1816), Boussinesq (1871), and
culminating in the one-dimensional equations of unsteady flow derived by Barré de
Saint-Venant (1871), the theoretical foundation for flow routing was essentially
achieved. The original Saint-Venant equations are the conservation of mass equation:

0(A4V)/ox + 0Alot = 0 1)
and the conservation of momentum equation:

VIt + V aViox + g(ohldx + ;) = 0 @)

in which ¢ is time, x is distance along the longitudinal axis of the waterway, A is cross-
sectional area, V is velocity, g is the gravity acceleration constant, and # is the water
surface elevation above a datum. S; is the friction slope which may now be evaluated
using a steady flow empirical formula such as the Manning equation (Manning, 1889;
Chow, 1959), i.e.,

Q = pin ARPS)? A3)

in which Q=AV is discharge or flow, R=A/P is the hydraulic radius and P is the
wetted perimeter of the cross section, S, is the channel bottom slope (dimensionless), u
is a units conversion factor, i.e., 1.49 for U.S. units or 1.0 for SI, and n is the
Manning roughness (friction) coefficient. Equations (1) and (2) are quasi-linear
hyperbolic partial differential equations with two dependent parameters (V and h) and
two independent parameters (x and #). A is a known function of 4, and § is a known
function of V and k. Derivations of the Saint-Venant equations can be found in the
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following references: Stoker (1957), Henderson (1966), Strelkoff (1969), and Liggett
(1975).

Due to the mathematical complexity of the Saint-Venant equations (no analytical
solution is known), simplifications were necessary to obtain feasible solutions for the
salient characteristics of a propagating flood wave. This approach produced a
profusion of simplified flow routing models. The simplified flow routing models may
be categorized as: (I) purely empirical; (II) storage routing, based on the conservation
of mass and an approximate relation between flow and storage; and (IIT) hydraulic, i.e.,
based on the conservation of mass and a simplified form of the conservation of
momentum equation (2).

Categories (I) and (II) are further classified as lumped flow routing techniques in which
the flow is computed as a function of time, only at the most downstream location of
routing reaches along the waterway. Category (III) can be classified as distributed flow
routing techniques in which flow and depth or water-surface elevation are computed as
a function of time at frequent locations within routing reaches along the waterway.
During the last two decades dynamic hydraulic distributed flow routing methods based
on numerical solutions of the complete Saint-Venant equations have become
economically feasible as a result of advances in computing equipment and improved
numerical solution techniques. Following is a brief description of some of the more
popular storage routing models as well as both simplified and dynamic hydraulic flow
routing models.

5.8.2 Storage Routing Models

Significant river improvement projects in the early 1900s provided the impetus for
development of an array of simplified flow routing methods. These have been termed
storage routing models. They are based on the conservation of mass equation (1)
written in the following form:

I-0=ASAt @

in which AS is the change in storage within the routing reach during a Az time
increment, [ = 0.5[I(¢)+I(t+At)], and O = 0.5[O(t) +O(t + At)]; the storage (S) is
assumed to be related to inflow (/) and/or outflow (O), i.e.,

S=K[XI+1-X O] (5)

in which K is a storage constant with dimensions of time, and Xisa weighting
coefficient, 0 < X < 1. Storage routing models are limited to typical flood routing
applications where the outflow and water-surface elevation relation is essentially single-
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valued, and the waterways are not mild sloping (S,>0.002). Thus backwater effects
from tides, significant tributary inflow, and dams or bridges are not considered by these
models, nor are they well-suited for rapidly changing unsteady flows such as dam-break
flood waves, reservoir power releases, or hurricane storm surges. Generally, storage
routing models have two parameters which can be calibrated to effectively reproduce
the flood wave speed and its attenuated peak. The calibration requires that most storage
routing model applications be limited to where observed inflow-outflow hydrographs
exist. When using the observed hydographs to calibrate the routing coefficients,
variations in flood wave shapes within the observed data set are not considered, and
only the average wave shape is reflected in the fitted routing coefficients.

R i S Routing Mode]

Storage routing models applicable to reservoirs, which have essentially level water-
surface profiles, can be developed by assuming X to be zero in equation (5), i.e.
storage is dependent only on outflow. Expressing the term AS/A¢ in equation (4) as
the product of reservoir surface area (S,) which is a known function of water-surface
elevation () and the change of 4 over a j At time step, i.e.

AS/IAt = 0.5(S.+S" Y -hiy AL (©6)

Now denoting o (outflow) as é (discharge), the following reservoir routing model
(Fread, 1977) is obtained:

0.5(I/+P*") - 0.5(Q7+Q’"") - 0.5(S/+S" YK/ -h))/At = 0 (7

The inflow (I) at times j and j+1 are known from the specified inflow hydrograph, the
outflow (Q) at time j can be computed from the known water-surface elevation (4) and
an appropriate spillway discharge equation. The surface area (S/) can be determined
from the known value of #. The unknowns in the equation consist of #/*!, 9/*!, §/*';
the latter two are known nonlinear functions of #*'. Hence, equation (7) can be solved
for #*! by an iterative method such as Newton-Raphson, i.e.,

A TR (T VI A (A ®8)

in which k is the iteration counter; and f(h’ l) is the left-hand side of equation (7)
evaluated with the first estimate for h’ , which for k=1 is either # or a linear
extrapolated estimate of #**; f/(hl"") is the derivative of equation (7) with respect to
K*!. It can be approximated by using a numerical derivative as follows:
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£ =t o -l - ol v o - @t - o ©)

in which € is a small value, say 0.1 ft (0.03m). Using equation (8), only one or two
iterations are usually required to solve equation (7) for #*'. Initially, the reservoir
pool elevation (#) must be known to start the computational process. Once # *Tis
obtained Q'*/ can be computed from the spillway discharge equation, Q = f(h."").

Level-pool routing is less accurate as the reservoir length increases, as the reservoir
mean depth decreases, and as the time of rise of the inflow hydrograph decreases
(Fread, 1992). This inaccuracy can have significant economic effects on water control
management practices (Sayed and Howard, 1983).

Muskingum Mode]

A widely used hydrologic flow routing model is the Muskingum model developed by
using equation (5), with nonzero values for both K and X, for the storage relationship.
Substituting this information into equation (4), the following is obtained for computing
O(t+Ar):

O(t+A) = C It+A) + C,I(t) + C,0() + C, (10)
where:
C, =K - KX + A2 (11)
C, = -(KX - A2)/C, (12)
C, = (KX + At2)/C, (13)
C, = (K - KX - At12)/C, (14)
C, = 0.5[q(r) + q(t+At)] Ax At/C, (15)

and where C, + C, + C; = 1 and K3 < At < K is usually the range for At.

Equation (10), which has been expanded to include the effects of lateral inflow (g)
along the Ax routing reach, is the widely used Muskingum routing model first
developed by McCarthy (1938). The parameters K and X are determined from
observed inflow-outflow hydrographs using least-squares or its equivalent, the
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graphical method or other techniques (Singh and McCann, 1980). Among the many
descriptions and variations of the Muskingum model are: Chow (1964); Chow et al.
(1988); Strupczewski and Kundzewicz (1980); Dooge et al. (1982); and Linsley et al.
(1986).

A significant improvement of the Muskingum model was developed by Cunge (1969)
known as the Muskingum-Cunge model. This increased the Muskingum model’s
accuracy, and made it applicable in situations where observed inflow and outflow
hydrographs were not available for calibration, and enabled it to be changed from a
lumped to a distributed flow routing model. Cunge derived equation (10) using the
assumption of a single-valued Q (h) relation, the classical kinematic wave equation (see
equation (25)), and applying a four-point implicit finite-difference approximation
technique. Equatlon (1.0) is rewrltten where the flows/(f), I(t+At), O(f) and O(t + At)
are replaced by 97, 0", 0/, and @/, respectively, i.e.,

ol =c o +c,0 +C30. + (16)

but the following expressions for K and X are determined:

K = Ax/c 17
X =05[1 - Q/@BS, Av)| (18)

where:
¢ = dQldA (19)

in which ¢ is the kinematic wave speed, Ax is the reach length, and S, is the energy
slope approximated by evaluating S, in equation (3) for the initial flow condition. The
bar (-) indicates the variable is averaged over the Ax reach and over the Ar time step.
Equation (19) may be expressed in an alternative form, i.e.,

c=K'Qld (20)
where:

K' = 5/3 -2/3 (dB/dy) A/(B)* 1)
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in which A is the cross-sectional area; B is the channel width at the water surface, 4 is
the water-surface elevation of the flow, and the Manning equation is used to relate
discharge (Q) and depth or water-surface elevation (4). Depending on the cross-section
shape, K’ may have values in the range, 4/3 < K’ < 5/3; the upper value is associated
with either a very wide or rectangular channel. Selection of the appropriate time step
At is given by:

At < T./M 22)

where T, is the time of rise in hours of the inflow hydrograph and M is an integer (10 <
M < 20) whose value depends on the extent of variation in the inflow hydrograph. The
selection of Ax affects the accuracy of the solution. It is related to Az and is limited by
the following inequality (Jones, 1981):

Ax < 0.5cArl + (1 + 15 0/(Bc2S, )7 23)

While the Muskingum-Cunge model does not require observed inflow-outflow
hydrographs to establish the routing coefficients as required in the Muskingum model,
best results are obtained if the wave speed (c) is determined from actual flow data.
Also, the model is restricted to applications where backwater is not significant and
discharge-water elevation rating curves do not have significant loops and discharge
hydrographs are not rapidly changing with time such as dam-break floods.
Nonetheless, the Muskingum-Cunge model (Miller and Cunge, 1975; Ponce and
Yevjevich, 1978) is a highly versatile simplified routing model.

5.8.3 Simplified Hydraulic Routing Models

Prior to computers, or more recently the feasible economical availability of such
computational resources, the inability to obtain feasible numerical solutions to the
complete Saint-Venant equations resulted in the development of several simplified
distributed hydraulic routing models. They are based on the mass conservation
equation (1) and various simplifications of the momentum equation (2).

Ki ic Wave Model

The most simple type of distributed hydraulic routing model is the kinematic wave
model. It is based on the following simplified form of the momentum equation (2):

S, -8,=0 (24)
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in which S, is the bottom slope of the channel (waterway) and a component of the term,
oh/ox = dy/ox - S, in whichdy/dx is assumed to be zero. This assumes that the
momentum of the unsteady flow is the same as that of steady, uniform flow described
by the Manning equation or a similar expression in which discharge is a single-valued
function of depth, i.e., 00/04 = dQ/dA = c. Also, since 04/t = d4/3Q - 3Q/t
and Q = AV, equation (1) can be expanded into the classical kinematic wave equation,
ie.,

dQ/ot + ¢ dQ/ox = 0 25)
in which the kinematic wave velocity or celerity (c) is defined by equation (20).

Solutions for the kinematic wave equation (25) can be achieved using the method of
characteristics or directly by finite-difference approximation techniques of either
explicit or implicit types (Chow et al., 1988; Hydrologic Engr. Ctr., 1981; Linsley

et al., 1986). The kinematic wave equation does not theoretically account for
hydrograph (wave) attenuation. It is only through the numerical error associated with
the finite-difference solution that attenuation of the hydrograph peak is achieved.
Kinematic wave models are limited to applications where single-value, stage-discharge
ratings exist--where there are no loop-ratings--and where backwater effects are
insignificant. Since, in kinematic wave models, flow disturbances can propagate only
in the downstream direction, reverse (negative) flows cannot be predicted. Kinematic
wave models are appropriately used as components of hydrologic watershed models for
overland flow routing of runoff; they are not recommended for channel routing unless
the hydograph is very slow rising, the channel slope is moderate to steep, and
hydrograph attenuation is quite small. The range of application (with expected
modeling errors less than five percent) for kinematic models, including the Muskingum
method, is given by the following:

T.5,%/(q)* n'?) > 0.014 (26)

in which T is the time (hrs) of rise of the wave (hydrograph) i.e., the interval of time
from beginning of significant rise to when the peak occurs, S, is the bottom slope
(ft/ft), g, is the unit-width discharge (Q/B) in ft*/sec, and n is the Manning roughness
coefficient (Fread, 1985, 1992).

Diffusion Wave Model
Another simplified distributed routing model, known as the diffusion wave (zero-

inertia) model, is based on equation (1) along with an approximation of the momentum
equation that retains only the last two terms in equation (2), i.e.,
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ohldx + S, = 0 @7)

Finite-difference approximation techniques, both explicit and implicit (Strelkoff and
Katopodes, 1977), have been used to obtain simultaneous solutions to equations (1) and
(27). The diffusion simplified routing model considers backwater effects; however, its
accuracy is also deficient for very fast rising hydographs, such as those resulting from
dam failures, hurricane storm surges, or rapid reservoir releases, which propagate
through mild to flat sloping waterways with medium to small Manning’s n. The range
of application (with expected modeling errors less than 5 percent) for the diffusion
models, including the Muskingum-Cunge model, is given by the following (Fread,
1992): '

T.50"n%/¢%* > 0.0003 (28)

5.8.4 Dynamic Routing Model

When the complete Saint-Venant equations (1) and (2) are used, the routing model is
known as a dynamic routing model. With the advent of high-speed computers, Stoker
(1953) and Isaacson et al. (1954, 1956) first attempted to use the complete Saint-Venant
equations for routing Ohio River floods. Since then, much effort has been expended on
the development of dynamic routing models. Many models have been reported in the
literature (Fread, 1985, 1992; Liggett and Cunge, 1975).

Dynamic routing models can be categorized as characteristic or direct methods of
solving the Saint-Venant equations. In the characteristic methods, the Saint-Venant
equations are first transformed into an equivalent set of four ordinary differential
equations which are then approximated with finite differences to obtain solutions.
Characteristic methods(Abbott, 1966; Henderson, 1966; Streeter and Wylie, 1967;
Baltzer and Lai, 1968) have not proven advantageous over the direct methods for
practical flow routing applications.

Direct methods can be classified further as either explicit or implicit. Explicit schemes
(Stoker, 1953, 1957; Isaacson et al., 1954; Garrison et al., 1969; Dronkers, 1969;
Strelkoff, 1970; Liggett and Cunge, 1975; Veissman et al., 1977; Linsley et al., 1986)
transform the differential equations into a set of algebraic equations which are solved
sequentially for the unknown flow properties at each cross section at a given time.
However, implicit schemes (Preissmann, 1961; Amein and Fang, 1970; Strelkoff,
1970; Fread, 1973, 1977, 1978, 1985; Liggett and Cunge, 1975; Cunge et al., 1980;
Shaffranek, 1987; Fread and Lewis, 1988; Chow et al., 1988; Barkow, 1990)
transform the Saint-Venant equations into a set of algebraic equations which must be
solved simultaneously for all Ax computational reaches at a given time; this set of
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simultaneous equations may be either linear or nonlinear, the latter requiring an
iterative solution procedure.

Explicit methods, although simpler in application, are restricted by numerical stability
considerations. Stability problems arise when inevitable errors in computational round-
off and those introduced in approximating the partial differential equations via finite
differences accumulate to the point that they destroy the usefulness and integrity of the
solution, if not the total breakdown of the computations, by creating artificial
oscillations of length about 2Ax in the solution. Due to stability requirements,. explicit
methods require very small computational time steps on the order of a few seconds or
minutes depending on the ratio of the computational reach length (Ax) to the minimum
dynamic wave celerity (&), i.e., At < Ax/u, where u = V + (gA/B)"?. This is known
as the Courant condition, and it restricts the time step to less than that required for an
infinitesimal disturbance to travel the Ax distance. Such small time steps cause explicit
methods to be inefficient in the use of computer time.

Implicit finite-difference techniques, however, have no restrictions on the size of the
time step due to mathematical stability; however, numerical convergence (accuracy)
considerations require some limitation in time step size (Fread, 1974; Cunge et al.,
1980). Implicit techniques are generally preferred over explicit because of their
computational efficiency. Therefore, an implicit scheme will be subsequently described
in detail, herein. Rather than using finite-difference approximation techniques to solve
the Saint-Venant equations, finite-element techniques (Gray et al., 1977; DeLong,
1986, 1989) can be used; however, their greater complexity offsets any apparent
advantages when compared to a weighted, four-point implicit finite-difference scheme
(described later) for solving the one-dimensional flow equations. However, finite-
element techniques are often applied to two- and three-dimensional flow computations.

Saint-V Equati

A modified and expanded form (Fread, 1988, 1992) of the original one-dimensional
Saint-Venant equations (1) and (2) consist of the conservation of mass equation, i.e.,

0Q/ox + ds (A + A)/ot -q =0 (29)
and the momentum equation, i.e.,
o[d(s,Q)/or + 0(BQ*A)/ox] + gA(Oh/dx + S;+8,+S)+L+WB=0 (30

where Q is discharge, 4 is the water-surface elevation, A4 is the active cross-sectional
area of flow, A, is the inactive (off-channel storage) cross-sectional area, s, and s, are
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area-weighted and conveyance-weighted sinuosity factors, respectively (DeLong, 1986,
1989) which correct for the departure of a sinuous in-bank channel from the x-axis of
the floodplain, x is the longitudinal mean flow-path distance measured along the center
of the waterway (channel and floodplain), ¢ is time, ¢ is the lateral inflow or outflow
per lineal distance along the waterway (inflow is positive and outflow is negative), o is
a numerical filter (0 < 0 < 1, usually 0 = 1) to enable the equations to properly handle
mixed subcritical/supercritical flows (Fread et al., 1996) during the numerical solution
(see a later section on subcritical/supercritical mixed flow for more on o), B is the
momentum coefficient for nonuniform velocity distribution within the cross section, g
is the gravity acceleration constant, S; is the boundary friction slope, S, is the
expansion/contraction (large eddy loss) slope, and S is the viscous dissipation slope for
mud/debris flows.

Friction Slope. The boundary friction slope (S is evaluated by rearranging the
Manning equation (3) for uniform, steady flow into the following form:

S, = n?|Q|Q/(n* 4% R*®) = |Q|Q/K? (31)

in which 7 is the Manning coefficient of frictional resistance (Chow, 1959; Barnes,
1967; Arcement and Schneider, 1984; Jarrett, 1982; and Fread, 1989), R is the hydrau-
lic radius, p is a units conversion factor (1.49 for US units and 1.0 for SI), and X is the
channel conveyance factor. The absolute value of Q is used to correctly account for the
possible occurrence of reverse (negative) flows. The conveyance formulation is
preferred (for numerical and accuracy considerations) for composite channels having
wide, flat overbanks or floodplains in which K represents the sum of the conveyance of
the channel (which is corrected for sinuosity effects by dividing by s,), and the convey-
ances of left and right floodplain areas.

When the conveyance factor (K) is used to evaluate S, the river channel/valley cross-
sectional properties are designated as left floodplain, channel, and right floodplain
rather than as a composite channel/valley section. Special orientation for designating
left or right is not required as long as consistency is maintained. The conveyance factor
is evaluated as follows:

K=K +K +K, (32)

where:

K, = £ 4,R? 33)
h,
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K = —°¢¢ (34)
¢ n sm1/2
K = ni A RYP (35)

r

in which the subscripts ¢, c, and r designate left floodplain, channel, and right
floodplain, respectively.

Sinuosity Factors. The area-weighted and conveyance-weighted sinuosity
factors (s, and s,,, respectively) in equations (29), (30), and (34) represent the ratio(s) of
_ the flow-path distance along a meandering channel to the mean flow-path distance along
the floodplain. Initially, only one sinuosity factor (s,) is specified as varying only with
each J* depth of flow (J = 1,2,...,J, where]J is the number of user-specified tabular
top widths (B) vs. h values which describe the cross section geometry), but then this is
recomputed within the model according to the following relations:

S, = :: (AA,k A s AA,k) / (AU v A+ A,J) (36)
Sm, = :: (Aka + AK_ s, + AK,k) / (KQJ + K+ K,J) 37)

in which A4 = 4,,, - A;, and s, represents the sinuosity factor for a differential portion
of the flow between the J* depth and the J+ 1™ depth, and K is the conveyance factor.

Expansion/Contraction Effects. The term (S,.) is computed as follows:
S.. =k, A(Q/4)*/(2g Ax) (38)

in which %, is the expansion/contraction coefficient (negative for expansion/positive for
contraction) which varies from -1.0/0.4 for an abrupt change in section geometry to
-0.3/0.1 for a very gradual, curvilinear transition between cross sections. The A
represents the difference in the term (Q/A) at two adjacent cross sections separated by
a distance Ax. If the flow direction changes from downstream to upstream, k. can be
automatically changed (Fread, 1988).

Large floods such as dam-break-generated floods usually have much greater velocities;
it is important, especially for nonuniform channels (Rajar, 1978) to include in the
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Saint-Venant momentum equation (30) the expansion/contraction losses via the S, term
defined by equation (38). The ratio of expansion/contraction losses (form losses) to the
friction losses can be in the range of 0.01 < S,./S; < 1.0. The larger ratios occur for
very irregular channels with relatively small n values and for flows with large velocities
(dam-break floods). -

Momentum Correction Coefficient. The momentum correction coefficient ®)
for nonuniform velocity distribution across the cross section is (Chow, 1959):

B = (krdy v K2A, + K241 [(K + K, KPI(A, + 4, + )] (9)

in which K is conveyance, 4 is wetted area, and the subscripts 4, c, and r denote left
floodplain, channel, and right floodplain, respectively. When floodplain properties are
not separately specified and the total cross section is treated as a composite section,
can be approximated as 1.0 < B < 1.06 in lieu of equation (39).

Lateral Flow Momentum. The term (L) in equation (30) is the momentum
effect of lateral flows, and has the following form (Strelkoff, 1969): (a) lateral inflow,
= -qv,, where v, is the velocity of lateral inflow in the x-direction of the main
channel flow; (b) seepage lateral outflow, L = -0.5qQ/A; and (c) bulk lateral outflow,
L = -qQ/A.

Mud or Debris Flows. The friction loss term () is included (Fread, 1988) in
the momentum equation (30) in addition to S to account for viscous dissipation effects
of non-Newtonian flows such as mud or debris flows. Also, mine tailings dams, where
the viscous contents retained by the dam have non-Newtonian properties, are dam-
breach flood applications requiring the use of S in equation (30). This effect becomes
significant only when the solids concentration of the flow is greater than about 40
percent by volume. For concentrations of solids greater than about 50 percent, the
flow behaves more as a landslide and is not governed by the Saint-Venant equations. S,
is evaluated for any non-Newtonian flow as follows (Jin and Fread, 1997):

1
Si — Ty 1 + (b+l)(b+2)Q b+0.15 (40)
Y (0.74 +0.66b) (t,/x)* DA

in which vy is the fluid's unit weight, T, is the fluid's yield strength, D is the hydraulic
depth (4/B), b = 1/m where m is the exponent of the power function that fits the fluid's
stress(T,)-strain(dv/dy) properties, and x is the apparent viscosity or scale factor of the
power function, i.e., T, = T, + x(dv/dy)". The viscous properties, T, and k, can



D. FREAD
HB OF WEATHER, CLIMATE, AND WATER
5, FLOW ROUTING

5-13

be estimated from the solids concentration ratio of the mud flow (O'Brien and Julien,
1984).

Wind Effects. The last term (WB) in equation (30) represents the resistance
effect of wind on the water surface (Fread, 1985, 1992); B is the wetted topwidth of the
active flow portion of the cross section; and W = V,|V,|c,, where the wind velocity
relative to the water is V, = V, cos w + V, V, is the velocity of the wind (+) if
opposing the flow velocity and (-) if aiding the flow, w is the acute angle the wind
direction makes with the x-axis, V is the velocity of the unsteady flow, and ¢, is a wind
friction coefficient (1x107 < ¢, < 3x107%). This modeling capability can be used to
simulate the effect of potential dam overtopping due to wind set-up within a reservou
by applying the Saint-Venant equations to the unsteady flow in a reservoir.

Imolicit Four-Point. Finite-Diff ! I

The extended Saint-Venant equations (29) and (30) constitute a system of partial
differential equations with two independent variables, x and ¢, and two dependent
variables, 4 and Q; the remaining terms are either functions of x, ¢, h, and/or Q, or
they are constants. The partial differential equations can be solved numerically by
approximating each with a finite-difference algebraic equation; then the system of
algebraic equations are solved in conformance with prescribed initial and boundary
conditions.

Of various implicit, finite-difference solution schemes that have been developed, a four-
point scheme first suggested by Issacson et al. (1954, 1956) and first used by
Preissmann (1961) and later by Amein and Fang (1970) and then a weighted version by
others (Fread, 1974, 1977, 1985, 1988; Cunge et al., 1980) is most advantageous. It is
readily used with unequal distance steps, its stability-convergence properties are conve-
niently modified, and boundary conditions are easily applied.

Space-Time Plane. In the weighted four-point implicit scheme, the continuous
x-t region in which solutions of 4 and Q are sought is represented by a rectangular grid
of discrete points as shown in Fig. 1. An x-t plane (solution domain) is a convenient
means for expressing relationships among the variables. The grid points are
determined by the intersection of lines drawn parallel to the x- and t-axes. Those
parallel to the t-axis represent locations of cross sections; they have a spacing of Ax,
which need not be the same between each pair of cross sections. Those parallel to the
X-axis represent time lines; they have a spacing of Az, which also need not be the same
between successive time lines. Each point in the rectangular network can be identified
by a subscript (i) which designates the x-position or cross section and a superscript (j)
which designates the particular time line.
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Figure 1. The x-t solution domain for the weighted four-point implicit scheme

Numerical Approximations. The time derivatives are approximated by a
forward-difference quotient at point (x',t') centered between the i and i+ 1 lines along
the x-axis as shown in Fig. 1, i.e.,

ob/ar = (& + ¢ - &) - ¢.)/@2 Ar) 4D

where ¢ represents any dependent variable or functional quantity (Q, s, s,,, A, 4,, ¢,
h). Spatial derivatives are approximated at point (x’,t’) by a forward-difference
quotient located between two adjacent time lines according to weighting factors of 6
(the ratio At'/At shown in Fig. 1) and 1-0, i.e.,

ob/ox = O(d)) - ¢)")/Ax, + (1-6)(df., - ¢)/Ax, (42)

Nonderivative terms are approximated with weighting factors at the same time level
(point (x’,t")) where the spatial derivatives are evaluated, i.e.,

b = 0" + P2+ 1-0), + Bl,)/2 (43)

The weighted four-point implicit scheme is unconditionally, linearly stable for 6 > 0.5
(Fread, 1974); however, the sizes of the Az and Ax computational steps are limited by
the accuracy of the assumed linear variations of functions between the grid points in the
X-t solution domain. Values of O greater than 0.5 dampen parasitic oscillations which
have wave lengths of about 2Ax that can grow enough to invalidate or destroy the
solution. The 6 weighting factor causes some loss of accuracy as it departs from 0.5, a
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box scheme, and approaches 1.0, a fully implicit scheme. This effect becomes more
pronounced as the magnitude of the ratio (7,/Af) decreases where 7, is the time of rise
of the hydrograph (time interval from beginning of significant rise to peak of the
hydrograph). Usually, a 6 weighting factor of 0.60 is used to minimize the loss of
accuracy while avoiding the possibility of weak (pseudo) instability for 0 values of 0.5
when frictional effects are minimal.

Selection of Af and Ax Computational Parameters. The computational time step
(A7) can be either specified or automatically determined to best suit the most rapidly
rising hydrograph occurring within a system of rivers that may contain one or more
breaching dams or other dynamic internal boundary conditions. The time step is
selected according to the following:

At = T /M (44)

where T, is the minimum time of rise (seconds) of any hydrograph that has been
specified at upstream boundaries or in the process of being generated at a breaching
dam. M is user specified according to the following guidance (Fread, 1993):

M = 2671 + p'n®/(q*1 8> (45)

in which p’ = 3.97 (3.13 SI units), n is the Manning friction coefficient, g is the peak
flow per unit channel width (Q/B), and S, is the channel bottom slope. M usually
varies within the range, 6 < M < 40, with M often assumed to be approximately 20.

The Ax computational distance step can be specified or automatically determined
according to the smaller of two criteria (Fread, 1993). The first criterion is:

Ax < ¢T,/20 (46)

in which c is the bulk wave celerity (the celerity or velocity associated with an essential
characteristic of the unsteady flow such as the peak of the hydrograph). In most
applications, the wave velocity is well approximated as a kinematic wave, and c is
estimated as 3/2V (V is the flow velocity) or ¢ can be obtained by dividing the distance
between two points along the channel by the difference in the times of occurrence of the
peak of an observed or computed flow hydrograph at each point. Since ¢ can vary
along the channel, and depending upon the extent of this variation, Ax may not be
constant along the channel.



D. FREAD
HB OF WEATHER, CLIMATE, AND WATER
5, FLOW ROUTING

5-16

The second criterion for selecting Ax is the restriction imposed by rapidly varying
cross-sectional changes along the x-axis of the waterway. Such expansion/contraction
is limited to the following inequality (Samuels, 1985):

0.635 < 4,,,/4, < 1.576 (47)

This condition results in the following approximation (Fread, 1988) for the maximum
computational distance step:

Ax < L'/IN' (48)
where:

N'=1+214,-4,,/4 | (49)

i+l
in which L’ is the distance between two adjacent (i and i+ 1) cross sections differing
from one another by approximately 50 percent or greater, A is the active cross-sectional
area, A = A,,, if A, > A,,, (contracting reach) or 4 = 4, if A, < 4,,, (expanding
reach), and N’ is rounded to the nearest integer value.

Significant changes in the bottom slope of the waterway also require small distance
steps in the vicinity of the change. This is required particularly when the flow changes
from subcritical to supercritical or conversely along the waterway. Such changes can
require computational distance steps in the range of 50 to 200 ft (15 to 63 m).

Automatic Interpolation. It is convenient to automatically provide linearly
interpolated cross sections at a user specified spatial resolution in order to increase the
spatial frequency at which solutions to the Saint-Venant equations are obtained. This is
often required for purposes of attaining numerical accuracy/stability when (a) routing
very sharp-peaked hydrographs such as those generated by breached dams, (b) when
adjacent cross sections either expand or contract by more than about 50 percent, and (c)
where mixed flow changes from subcritical to supercritical or vice versa.

Algebraic Routing Equations. Using the finite-difference operators of equations
(41)-(43) to replace the derivatives and other variables in equations (29) and (30), the
following weighted four-point, implicit, nonlinear, finite-difference algebraic equations
are obtained:
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’Ii =, + 4,,)/2
'§ = Q_’Ql/(zA R = ’Ql/K

0, = (0, + 0.2

;= 4/B,
Ex = (B, + B,))/2
= (K, + K,,;)/2
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line are known from initial conditions or previous time-step computations; and p in
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equation (53) is defined in equation (31). The Ax distance between cross sections is
measured along the peak flow path through the waterway.

Solution Procedure

The flow equations are expressed in finite-difference form for all Ax, reaches between
the first and last (N-th) cross section (i = 1,2,...,N) along the channel/floodplain and
then solved simultaneously for the unknowns (Q and k) at each cross section. In
essence, the solution technique determines the unknown quantities (Q and 4 at all
specified cross sections along the waterway) at various times into the future; the
solution is advanced from one time to a future time over a finite time interval (time
step) of magnitude Az. Thus, applying equations (50) and (51) recursively to each of
the (N-1) rectangular grids in Fig. 1 between the upstream and downstream boundaries,
a total of (2N-2) equations with 2N unknowns are formulated. Then, prescribed
boundary conditions for subcritical flow (Froude number less than unity, i.e.,

Fr = Q0/4 @) < 1), one at the upstream boundary and one at the downstream
boundary, provide the two additional and necessary equations required for the system to
be determinate. Since disturbances can propagate only in the downstream direction in
supercritical flow (Fr > 1), two upstream boundary conditions and no downstream
boundary condition are required for the system to be determinate when the flow is
supercritical throughout the routing reach. The boundary conditions are described
later. Due to the nonlinearity of equations (50) and (51) with respect to Q and A, an
iterative, highly efficient quadratic solution technique such as the Newton-Raphson
method is frequently used. Other solution techniques linearize equations (50) and (51)
via a Taylor series expansion or other means. Convergence of the iterative technique is
attained when the difference between successive solutions for each unknown is less than
a relatively small prescribed tolerance. Convergence for each unknown at all cross
sections is usually attained within about one to five iterations with the majority of
solutions obtained within two iterations. A more complete description of the solution
method may be found elsewhere (Fread, 1985).

The solution of 2N x 2N simultaneous equations requires an efficient matrix technique
for the implicit method to be feasible. One such procedure requiring 38N
computational operations (+, -, *, /) is a compact, penta-diagonal Gaussian elimination
method (Fread, 1971, 1985) which makes use of the banded structure of the coefficient
matrix of the system of equations. This is essentially the same as the double sweep
elimination method (Liggett and Cunge, 1975; Cunge et al., 1980).

When flow is everywhere and at all times supercritical, the solution technique
previously described can be somewhat simplified. Two boundary conditions are
required at the upstream boundary and none at the downstream boundary since flow
disturbances cannot propagate upstream in supercritical flow. The unknown 4 and Q at
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the most upstream cross section are determined from the two boundary equations.
Then, cascading from upstream to downstream, equations (50) and (51) are solved for
the two unknowns (4, and Q,,,) at each cross section by using Newton-Raphson
iteration applied recursively to the two nonlinear equations, with o=1 in equation (51).

Initial Conditi

Values of water-surface elevation (k) and discharge (Q) for each cross section must be
specified initially at time t = O to obtain solutions to the Saint-Venant equations. Initial
conditions may be obtained from any of the following: (a) observations at gaging
stations and using interpolated values between gaging stations for intermediate cross
sections in large rivers; (b) computed values from a previous unsteady flow solution
(used in real-time flood forecasting); and (c) computed values from a steady-flow
backwater solution. The backwater method is most commonly used, in which the
steady discharge at each cross section is determined by:

0., = O, + 4, Ax, i = 123,.,N-1 (58)

in which @, is the assumed steady flow at the upstream boundary at time =0, and ¢ is
the known average lateral inflow or outflow along each Ax reach at t=0. The water-
surface elevations (h;) are computed according to the following steady-flow
simplification of the momentum equation (30):

(QYA),,, - (QYA), + gd, (h,, - h, + Ax,; 5;) = 0 (59)

in which 4 and Sf are defined by equations (52) and (53), respectively. The
computations proceed in the upstream direction (i = N-1, ... 3,2,1) for subcritical flow
(they must proceed in the downstream direction for supercritical flow). The starting
water-surface elevation (h,) can be specified or obtained from the appropriate
downstream boundary condition for the discharge (Q,) obtained via equation (58). The
Newton-Raphson iterative solution method (Fread and Harbaugh, 1971) for a single
equation and/or a simple, less efficient, but more stable bi-section iterative technique
can be applied to equation (59) to obtain 4. Due to friction, small errors in the initial
conditions will dampen-out after several computational time steps during the solution of
the Saint-Venant equations.

Upstream Boundary

Values for the unknowns at external boundaries (the upstream and downstream
extremities of the routing reach) of the channel/floodplain, must be specified in order to
obtain solutions to the Saint-Venant equations. In fact, in most unsteady flow
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applications, the unsteady disturbance is introduced at one or both of the external
boundaries.

A specified discharge time series (hydrograph) of inflow to the most upstream cross
section is used as the upstream boundary condition. The hydrograph should not be
affected by downstream flow conditions. This hydrograph may be obtained from the
following: (1) historical observations, (2) assumed design hydrograph, or (3) a runoff
hydrograph from specified rainfall-runoff model using calibrated or estimated model
parameters. The upstream boundary is expressed mathematically as follows:

o' -0 =0 (60)

in which Q(?) is the specified discharge time series and the subscript indicates the
discharge at the first cross section, i.e., the upstream boundary. Equation (60) is used
for the upstream boundary if dynamic routing (based on the discretized Saint-Venant
equations) commences at this location. However, if the most upstream cross section
represents the inlet to an upstream reservoir, a simple routing procedure (reservoir
level-pool routing) can be used rather than the considerably more complex dynamic
routing if (1) the reservoir is not excessively long and (2) the inflow hydrograph Q(¢) is
not rapidly changing with time. Level-pool routing errors (Fread, 1992), with a
magnitude of less than about 5 percent, can usually be tolerated.

Downstream Boundary

For subcritical flow, a specified discharge or water-surface elevation time series, or a
tabular relation between discharge and water-surface elevation (single-valued rating
curve) can be used as the downstream boundary condition.

Another downstream boundary condition can be a computed loop-rating curve based on
the Manning equation, i.e.,

QJN+1 ~ u/n A{;,”(R{;l)m (Sffv)l/z -0 ©61)

The loop is produced by using the friction slope (&) rather than the channel bottom
slope (S,) in the Manning equation. The friction slope exceeds the bottom slope during
the rising limb of the hydrograph while the reverse is true for the recession limb. The
friction slope (S)) is approximated by using equation (30) where L and W, are assumed
to be zero while s,, and B are assumed to be unity (Fread, 1985, 1988, 1992), i.e.,
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Sf, = ~loik - 04 )ileat art) - [(Q214Y, - (0¥, | (ea} ax,.,) - ©2)

(h;; B h}é-l)/AxN-l

The loop-rating boundary equation allows the unsteady wave to pass the downstream
boundary with minimal disturbance by the boundary itself, which is desirable when the
routing is terminated at an arbitrary location along the channel/floodplain and not at a
location of actual flow control such as a dam or waterfall, or where the flow is affected

by downstream backwater conditions produced by tidal action, reservoirs, or tributary
inflow.

When the downstream boundary is a stage/discharge relation (rating curve), the flow at
the boundary should not be otherwise affected by flow conditions further downstream.
Although there are often some minor effects due to the presence of cross-sectional
irregularities downstream of the chosen boundary location, these usually can be
neglected unless the irregularity is so pronounced as to cause significant backwater or
drawdown effects. Reservoirs, major tributaries, or tidal effects located below the
downstream boundary which cause backwater effects at the boundary should be
avoided. When either of these situations are unavoidable, the routing reach should be
extended downstream to the dam in the case of the reservoir or to a location
downstream of where the major tributary enters. Sometimes the routing reach may be
shortened by moving the downstream boundary to a location further upstream where
backwater effects are negligible.

Internal Boundaries

Often along the channel/floodplain, there are locations such as a dam, bridge, or
waterfall (short rapids) where the flow is rapidly varied in space rather than gradually
varied. At such locations (internal boundaries), the Saint-Venant equations are not
applicable since gradually varied flow is a necessary condition for their derivation.
Empirical water elevation-discharge relations such as weir-flow are utilized for
simulating rapidly varying flow. At internal boundaries, cross sections are specified
for the upstream and downstream extremities of the section where rapidly varying flow
occurs. The Ax reach containing an internal boundary requires two internal boundary
equations; since, as with any other Ax reach, two equations equivalent to the Saint-
Venant equations are required. One of the required internal boundary equations
represents conservation of mass with negligible time-dependent storage, i.e.,

o' -gll =0 (63)
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Dam. The second equation is usually an empirical rapidly varied flow relation.
If the internal boundary represents a dam, the following equation can be used:

o' -9, + 9yt =0 (64)

in which Q, and Q, are the spillway and dam-breach flow, respectively. In this way,
the flows Q, and Q,,, and the elevations 4; and A,,, are in balance with the other flows
and elevations occurring simultaneously throughout the entire flow system which may
consist of additional downstream dams which are treated as additional internal boundary
conditions via equations (63) and (64). In fact, this approach can be used to simulate
the progression of a dam-break flood through an unlimited number of reservoirs located
sequentially along the valley. The downstream dams may also breach if they are
sufficiently overtopped. The spillway flow (Q,) is computed from the following
expression:

Q, = ¢,L(h, = h)'S + c A (h, - h)S + c,Lyh, - h)S +Q, (65

in which c; is the uncontrolled spillway discharge coefficient, A, is the uncontrolled
spillway crest, c, is the gated spillway discharge coefficient, 4, is the center-line
elevation of the gated spillway, c, is the discharge coefficient for flow over the crest of
the dam, L, is the spillway length, and Q, is a constant outflow term which is head
independent or it may be a specified discharge time series. The uncontrolled spillway
flow or the gated spillway flow can also be represented as a table of head-discharge
values. The gate flow may also be specified as a function of time via a known time
series for A,(#). The breach outflow (Q,) is computed as broad-crested weir flow
(Fread, 1977, 1985, 1988, 1992; Fread and Lewis, 1988), i.e.,

Q, = c,k[3.1 b, (h, - hy)'° + 245 z (h, - hy)*’] (66)

in which ¢, is a small correction for velocity of approach, b, is the instantaneous breach
bottom width, 4; is the elevation of the water surface just upstream of the structure, A,
is the elevation of the breach bottom in which 4, is assumed to be a linear or nonlinear
function of time (#,) from beginning of the breach formation time (t), z is the side slope
of the breach, and k, is the submergence correction factor due to the downstream
tailwater elevation (h,), i.e.,

k

s

1.0 h* < 0.67 67)

k

s

1.0 - 223(h" - 0.67)° h* > 0.67 (68)
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where:
h* = (h, - hb)/(hi - hy) (69)

Using a parametric description of the breach, the instantaneous breach bottom width (b)
starts at a point at the crest of the dam and enlarges at a linear or nonlinear rate over
the failure time (t) until the terminal bottom width (b) is attained and the breach bottom
has eroded to the minimum elevation, h,,. The instantaneous bottom elevation of the
breach (h,) is described as a function of time (#,) according to the following:

hy, = h, - (h~h,) (t,/T)F 0O<t<t (70)

in which A, is the elevation of the top of the dam, 4, is the final elevation of the breach
bottom which is usually, but not necessarily, the bottom of the reservoir or outlet
channel bottom, z, is the time since beginning of breach formation, and p is the
parameter specifying the degree of nonlinearity, e.g., p=1 is a linear formation rate,
while p=2 is a nonlinear quadratic rate; the range for p is 1 < p < 4, with the linear
rate usually assumed. The interval of time (t) required for the breach to form is given
by t = 0.3 V,°'53/Hd0 ? in which H 4 = hy — hy,, V,is the reservoir volume (acre-ft)
from empirical data by Froehlich (1987); the standard error of estimate for T is

+ 0.9 hrs or + 74 percent of T (Fread, 1988, 1995). The instantaneous bottom width
(b;) of the breach is given by the following:

b, = bt,/t)° 0O<t <t (@)Y

in which b is the final width of the breach bottom given by b = b - zH, and

b = 9.5k, (V.H,)** from empirical data by Froehlich (1987) in which k, = 0.7 for
piping and k, = 1.0 for overtopping; the standard error of estimate for b is +82 ft
or + 56 percent of b (Fread,1988, 1995).

When simulating a dam failure, the actual breach formation can commence when the
reservoir water-surface elevation (4) exceeds a user-specified value, h.. This feature
permits the simulation of an overtopping of a dam in which the breach does not form
until a sufficient amount of water has passed over the crest of the dam to have eroded
away the downstream face of the dam.

If the breach is formed by piping, equation (66) is replaced by an orifice equation:

Q, = 48 4,(h, - h)? (72)



D. FREAD
HB OF WEATHER, CLIMATE, AND WATER
5, FLOW ROUTING

5-24

where:
Ap =[b, + z(hp - hb)](hp - hy) (73)

in which h, is the specified center-line elevation of the pipe. Each of the terms in
equation (65) except O, may be modified by a submergence correction factor similar to
k, which can be computed by equations (67) - (69), but in equation (69) 4, is replaced
by h,, h,, and h,, respectively.

Bridge. If the internal boundary represents highway/railway bridges together
with their earthen embankments which cross the floodplain, equations (63) and (64) can
still be used although Q, in equation (65) is computed by the following contracted
bridge flow expression:

Q, = Cy\g 4,,,(h, - b, )5 + Ck (h, - h ) (74)

in which C, is a coefficient of bridge flow (Chow, 1959), C, is the coefficient of flow
over the crest of the road embankment, 4, is the crest elevation of the embankment, and
k, is similar to equations (67)-(69) except 4, is replaced by #.. A breach of the
embankment is treated the same as with dams.

I ; ine/Floodplain I .

Flows which overtop levees located along either or both sides of a main-stem river
and/or its tributaries can be treated as lateral flow (g) in equations (29) and (30) where
the lateral flow diverted over the levee is computed as broad-crested weir flow. This
overtopping flow is corrected for submergence effects if the floodplain water-surface
elevation sufficiently exceeds the levee crest elevation. After the flood peak passes, the
overtopping flow may reverse its direction when the floodplain water-surface elevation
exceeds the river water-surface elevation, thus allowing flow to return to the river. The
overtopping broad-crested weir flow is computed according to the following:

g =-c k, (h-h)? (75)

where k;, the submergence correction factor, is computed as in equations (67)-(69)
except h* = (hfp - h,)/(h - h,), in which c, is the weir discharge coefficient, 4, is the
levee-crest elevation, 4 is the water-surface elevation of the river, and b, is the water-
surface elevation of the floodplain. Flow in the floodplain can affect overtopping flows
via the submergence correction factor. Flow may also pass from the waterway to the
floodplain through a time-dependent crevasse (breach) in the levee via a breach-flow
equation similar to equation (66). The floodplain, which is separated from the principal
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routing channel (river) by the levee, may be treated as: (a) a dead-storage area (4,) in
the Saint-Venant equations, in which case equation (75) is not relevant; (b) a tributary
which receives its inflow as lateral flows (the flows from the river which overtop the
levee-crest) which are simultaneously dynamically routed along the floodplain; and (c)
the flows and water-surface elevations can be computed by using a level-pool routing
method particularly if the floodplain is divided into compartments by levees (dikes) or
elevated roadways located somewhat perpendicular to the river levee(s).

g itical/Subcritical Mixed Fl

Flow can change with either time or distance along the routing reach from supercritical
to subcritical while passing through critical flow, or conversely. This "mixed flow"
requires special treatment to prevent numerical instabilities in the solution of the Saint-
Venant equations. Such a treatment for mixed flows (Fread et al., 1996) is to provide a
"local partial inertia" filter, i.e.,

o =(1-Frm (76)

which multiplies the first two (inertia) terms in the momentum equation (30) and
equation (51). Fr is the Froude number of the flow in any i* Ax reach, and the
exponent (m) varies from 1 to 10, with 5 usually preferred. The filter takes on a value
of zero when Fr > 1. The local partial inertia filter (o) avoids numerical difficulties
associated with mixed flows while introducing negligible errors, less than about a
maximum of 2 percent for all flows and less than 1 percent for almost all flow
conditions.

Flow Through a System of Rivers

A river system consisting of a main-stem river and one or more tributaries is efficiently

solved using an iterative relaxation method (Fread, 1973, 1985) in which the flow at the
confluence of the main-stem and tributary is treated as the lateral inflow/outflow (g) in
equations (29) and (30). This algorithm was extended so as to treat a dendritic system
of waterways having n®-order tributaries (Lewis et al., 1996). If the river system has
any bifurcations such as islands, along with or without n"-order tributaries, a network
solution technique is used (Fread, 1985), wherein three internal boundary equations
conserve mass and momentum at each bifurcation or junction confluence. The resulting
system of algebraic equations uses a special sparse matrix Gaussian elimination
technique for an efficient solution (Fread, 1983).
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